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Abstract

Continual learning is often motivated by the idea, known as the big world hypothesis, that the “world is bigger” than
the agent. Recent problem formulations capture this idea by explicitly constraining an agent relative to the environment.
These constraints lead to solutions in which the agent continually adapts to best use its limited capacity, rather than
converging to a fixed solution. However, explicit constraints can be ad hoc, difficult to incorporate, and limiting to
the effectiveness of scaling up the agent’s capacity. In this paper, we characterize a general problem setting in which
an agent of any capacity is implicitly constrained. In particular, we consider the implicit constraint faced by an agent
embedded in an environment. We introduce a universal-local environment to embed such an agent using computational
universality and transition dynamics that depend on a local neighbourhood of the state-space. The embedded agent
is implicitly constrained relative to its environment, represented as a partially observable Markov decision process. We
then propose interactivity as a measure of an embedded agent’s ability to adapt its future behaviour, conditioned on its
past behaviour, using Kolmogorov complexity. Using the fact that an agent’s interactivity is bounded by its capacity, we
conjecture that maximizing interactivity is a continual learning problem from the perspective of any agent.
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Figure 1: Comparing the agent’s relationship to the environment in our work, traditional RL, and AIXI. This work
introduces a universal-local environment, in which agents of varying sizes are embedded and implicitly constrained.
Traditional RL involves a fixed environment and agents of varying size, where the agent is often unconstrained by being
“bigger” than the considered environment. AIXI involves a computationally universal environment and an uncom-
putable agent, both of which are unconstrained.

1 Introduction: Big World Hypothesis

The big world hypothesis states that, in many learning problems, the environment is much larger—more “complex”—
than the agent, meaning that the agent cannot represent the optimal solution [9]. An implication of this hypothesis is that
agents faced with a big world should track an ever-changing approximation rather than trying to learn the optimal fixed
solution [18]. A formalization of the big world property could provide a problem formulation for continual learning,
similar to the role that Markov decision processes play in reinforcement learning.

Explicit constraints on the agent have been previously considered in continual learning as a means of capturing the big
world hypothesis. For example, in continual learning experiments, it is common practice to constrain what the agent
can store [14], or the capacity of its function approximator [13]. Information theory provides a framework to formalize
explicit agent constraints [11, 10]. However, outside of simple and well-specified pairs of agent and environment, these
constraints can be difficult to characterize without knowledge of the true information-theoretic quantities involved
between the state maintained by the agent and its future sensory stream from the environment. In addition, explicit
constraints hinder the effectiveness of scaling up the agent’s capacity, which has been a source of progress in machine
learning more broadly [6].

In contrast to explicit constraints, our approach considers the implicit constraint that arises from an agent embedded in
an environment (see Figure 1a). The embedded aspect of all intelligent systems, by existing in the physical world, is not
often considered to be part of the problem formulation [5]. However, the physical world is a clear example of a world
bigger than any agent, suggesting that embedded agency may be useful in formulating the big world hypothesis.

To provide a general environment in which an agent can be embedded, we define a universal-local environment. This
environment is a Markov process that is computationally universal—capable of simulating any computation—where the
transition dynamics can be localized to a neighbourhood of the state-space. Our approach is similar to universal artifi-
cial intelligence [8], which considers a computationally universal environment to explore the limits of the theoretically
optimal, but uncomputable, AIXI agent [7].

To define an embedded agent, we consider an embedded automaton simulated within the state-space of our universal-
local environment. This automaton interacts with a partially observable Markov decision process, defined on the bound-
ary between the automaton and the rest of the universal-local environment. We then propose interactivity that measures
an embedded automaton’s ability to adapt its future behaviour, conditioned on its past behaviour, using Kolmogorov
complexity. Interactivity is similar to previously considered intrinsic motivation objectives [3, 16], and specifically pre-
dictive information [2, 17]. However, interactivity differs because of its formulation in terms of behaviours using Kol-
mogorov complexity. This makes interactivity better suited to sequential decision making in the constrained and partially
observable setting that we consider.

2 A Bigger World: Computational Universality and Locality

We begin by defining a general notion of an environment that is unviversal in which an agent can be locally embedded.
Specifically, environment is used to refer to a general history-based process that is defined over a finite set of symbols, and
without an explicit notion of agent.

Definition 1. An environment, E “ pΣ,Cq, is a discrete process defined over a finite symbol-set, Σ, that maps a string of symbols,
σ0:t´1 “ σ0σ1 ¨ ¨ ¨σt´1, to the next-symbol that extends the string, σt P Σ, using the construction function, σt “ Cpσ0:t´1q.
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t t ` 1 t ` 2

Figure 2: Conway’s Game of Life is a cellular automaton and an example of a universal-local environment. The state-
space is an infinite 2D grid, in which cells live (black) with 2 or 3 neighbours, but die (white) otherwise, and dead cells
with 3 neighbours become alive. The blue and green borders (left) correspond to neighbourhoods that determine the
middle cell at time-steps t ` 1 (middle) and t ` 2 (right). Longer-term transition dynamics depend on larger neighbour-
hoods.

An environment is computationally universal if it is equivalent to a universal Turing machine, meaning that it is capable
of simulating any computation given a suitable initial string of symbols. Such an environment can also be represented
as a Markov process, MpEq “ pΩ,Uq, defined over the countably infinite state-space, Ω, in which the state, ωt P Ω, is
updated using the transition function, ωt`1 “ Upωtq.

2.1 Defining Locality with Boundaried Markov Processes

Intuitively, locality ensures that the environment’s transition dynamics on a restricted portion of the state-space. Specifi-
cally, we use the term substate-space to refer to the portion of the state-space restricted to a finite index-set.

Definition 2. A substate-space, ΩΛ, is defined as a restriction of the state-space, Ω, to a finite index-set, IdxpΩΛq :“ Λ where
|Λ| ă 8, such that ΩΛ “ tωΛ : ω P Ωu where ωΛ “ tωiuiPΛ. We use square set notation to denote operations on the index set, such
as ΩΛ Ď Ω to denote the inclusion of the index-set, Λ Ď IdxpΩq, and the union of index-sets, ΩΛ1\ ΩΛ2 “ ΩΛ1YΛ2 .

We now consider the environment’s transition restricted to a generic substate-space, X Ď Ω, without reference to the spe-
cific index-set, IdxpXq. In particular, we define a boundaried Markov process in which the one-step transition dynamics,
UX , depend on another substate-space, BX Ď Ω, referred to as the boundary-space for a given substate-space, X .

Definition 3. A boundaried Markov process, MX “ pX,BX ,UXq, is a discrete process in which the substate-space, X , and
boundary-space, BX , define the one-step transition of the substate-space, xt`1 “ UXpxt, btq, for xt`1, xt P X and bt P BX .

The boundary-space is defined for one-step dynamics; A larger boundary-space is generally needed for multi-step
transition dynamics. This is because the current substate, xt P X , and the current boundary, bt P BX , only define the
next-substate, xt`1 P X , and not the next-boundary, bt`1 P BX . We use this fact to define a local environment that
consists of nested boundaried Markov processes.

Definition 4 (Locality). A universal Markov environment is local if, for any two proper substate-spaces, W Ĺ X Ď Ω, there exists
boundaried Markov processes with corresponding index-sets that are properly contained, W \ BW Ĺ X\ BX .

Thus, a universal-local environment is a universal Markov environment that is also local. This environment is capable
of simulating arbitrary computations, and any bounded computation is localized to a portion of the environment’s
state-space. It can be understood as a computationally universal Markov process in which longer-term dynamics are a
function of a larger portion of the state-space.

2.2 Example of a Universal-Local Environment: Conway’s Game of Life

Conway’s Game of Life is an example of a universal-local environment [4]. This environment is computationally uni-
versal because, within Conway’s Game of Life, a universal Turing machine can be simulated [1, 15]. A substate-space
in Conway’s Game of Life is a finite subset of locations on the grid, specifying the possible values taken by the cells
at those locations. The one-step transition dynamics on any substate-space depend on the adjacent neighbourhood of
that substate-space, which defines the boundary-space (see Figure 2). Conway’s game of life is local because if one
substate-space contains another, then the boundary-spaces (the adjacent neighbourhood of the substate-spaces) are also
also contained.

While Conway’s Game of Life has the potential to simulate any computation using its local dynamics, we are not suggest-
ing to program an agent within it. We only point out Conway’s Game of Life as a proof-of-existence for universal-local
environments. Instead, we will consider and formalize the implicit constraints faced by an agent if it were embedded in
such an environment.

2



3 Embedded Agents as Localized Computations
A universal-local environment can simulate arbitrary computations, which we use to define an embedded automaton, A,
on the environment’s state-space, Ω. Moreover, due to locality, the embedded automaton can be localized to a substate-
space, A Ď Ω.

Definition 5. An embedded automaton is defined by A “ pA, IA, OA,UA, πAq, where A Ď Ω is the internal substate-space of
the automaton, IA, OA Ď BA are input and output spaces defined on the boundary-space, BA, and UA, πA are the automaton’s
transition and output function respectively.

An embedded automaton is equivalent to an agent interacting with a (potentially reward-free) partially observable
Markov decision process, if its boundary-space consists of only the input and output spaces, IA \ OA “ BA. Relat-
ing this to an agent in reinforcement learning, we may think of the input-space as the observation-space,1 the internal
substate as the parameters of a function approximator, the output-space as an action-space, the transition function as a
learning rule, and the output function as a policy.

By construction this agent is implicitly constrained relative to the environment by being a restricted model of compu-
tation. While every embedded agent is implicitly constrained, some may generate simple output sequences that do not
require more than agent’s capacity. For example, a periodic output sequence would not require more capacity than the
period of the sequence. We will show, however, that agents are constrained by their finite capacity when adapting to
their past input/output experience.

3.1 Interactivity as a Computational Measure of Adaptivity

An agent’s capability for learning can be characterized by its ability to adapt its future behaviour using its past experi-
ence. We propose interactivity to measure an embedded agent’s intrinsic ability to adapt its future behaviour, towards
higher complexity, conditioned on its past behaviour. Specifically, we use Kolmogorov complexity to formalize this
otherwise intuitive notion of adaptation and complexity.

We represent an embedded agent as an embedded automaton A where its input and output spaces determine its
boundary-space, IA Y OA “ BA. Thus, the behaviour of the agent is determined by the values taken on the boundary-
space, bt “ pit, πApitqq P BA where it P IA and πApitq P OA. At any time t, the behaviour can be separated into past,
b0:t “ b0b1 ¨ ¨ ¨ bt and the T -horizon future, bt`1:T “ bt`1bt`2 ¨ ¨ ¨ bt`T .

Definition 6. An agent’s interactivity at time t is the average difference in the unconditional Kolmogorov complexity of its fu-
ture behaviour and the conditional Kolmogorov complexity of its future behaviour, conditioned on its past behaviour, I˚

t pAq “

limTÑ8
1
T

`

Kpbt`1:T q ´ Kpbt`1:T |b0:tq
˘

.

That is, interactivity measures the predictable complexity of an agent’s future behaviour, given its past behaviour.
Interactivity is high if (i) the future behaviour, bt`1:T , has high unconditional Kolmogorov complexity and (ii) the
past behaviour, b0:t, is predictive of this future behaviour, thereby yielding a low conditional Kolmogorov complexity.
However, interactivity is low if the future behaviour has low Kolmogorov complexity, or if the past behaviour is not
sufficiently predictive.

3.2 An Interactivity-Maximizing Agent Faces a Big World

The interactivity of any embedded agent is always constrained by its capacity. That is, with a given capacity, an embed-
ded agent can only sustain a given level of interactivity. However, if the embedded agent is given more capacity, then it
could use the additional capacity to increase its interactivity. Thus, the environment appears to be a big world from the
perspective of an interactivity-maximizing agent.

An interactivity-maximizing agent has an ability to continually adapt its future behaviour by using its past experience.
This suggests the following interactivity thesis:

Interactivity measures a general capability for continual adaptation.

We refer to this as the interactivity thesis, rather than a hypothesis, to reflect its speculative and philosophical nature.
An agent’s capability for continual adaptation with low interactivity is limited because its future behaviour is either:
i) simple, or ii) complex, but not predictable from its past experience. In either case, the thesis stresses the relative
notion of capabilities. A simple agent could be capable of some adaptation, but its capabilities would be greater if its
past experience was used to produce more complex behaviour. Moreover, an agent that produces complex behaviour
could only be recognized as an adaptation if this complexity can be attributed, via prediction, to its past experience.
Embracing the interactivity thesis naturally leads to a relative spectrum of possible adaptive agents.

1The input-space may also provide an external reward to the automaton, but this need not be the case.
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4 Discussion
In this paper, we constructed a formalism for an agent interacting with a bigger world, by considering the implicit
constraint faced by an embedded agent. Our work suggests that maximizing interactivity leads to the common
desideratum of the continual learning problem in which any agent that stops learning is suboptimal. The key to this
formalism is the fact that interactivity does not depend on external feedback, but rather is defined in terms of the past
and future behaviour of the agent. While interactivity could potentially provide a rich source of intrinsic feedback,
it also introduces challenges the stability of our algorithms combining nonlinear representations, temporal difference
learning, and online learning.

Maximizing interactivity provides a problem setting for studying continual learning in isolation. A promising direction
is the development of an efficient algorithms for maximizing interactivity using reinforcement learning. In particular,
interactivity could be predicted, similar to a value function which is conditioned on the agent’s current policy and learn-
ing algorithm. Experimental evaluation in this setting also requires special consideration. Holding the agent fixed for
evaluation, as is commonly done in machine learning, is not be appropriate given that interactivity is defined as an
online objective. In addition, standard approaches to hyperparameter tuning may not be feasible for evaluating the long-
term performance of a continual learning agent [12]. Overcoming these obstacles would require re-evaluation of several
components of empirical practice in machine learning, and we thus leave an empirical investigation for future work.

We close with the following conjecture regarding interactivity and its utility as a general objective in an arbitrary envi-
ronment: if an agent is capable of sustaining a particular level of interactivity, then it is also capable of behaviours that
achieve other goals in that environment—such as maximizing external reward—that require equal or less interactivity.
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